pages_top_content_img_9.jpg
Logo_JS_207.jpg

Réseaux du futur : 5G et au-delà

11-13 mars, 2020
Telecom Paris, Institut Polytechnique de Paris, Palaiseau 

Rechercher > Par intervenant > Cipriano Antonio

Optimization and Analysis of Deep Unfolding Based Double Loop Turbo Equalizers
Serdar Sahin  1@  , Antonio Cipriano  1, *@  , Charly Poulliat  2, *@  
1 : THALES  (Thales)
THALES
4 Avenue des Louvresses, 92300, Gennevilliers -  France
2 : Institut National Polytechnique (Toulouse)  (Toulouse INP)
Institut National Polytechnique de Toulouse - INPT, Institut de recherche en informatique de Toulouse - IRIT
* : Auteur correspondant

This paper investigates the use of hybrid model-and-data-based deep learning on a recently proposed doubly-iterative turbo equalizer for handling inter-symbol interference (ISI) channel with single-carrier frequency domain equalization (SC-FDE).
The receiver is obtained through a message-passing-based approximate Bayesian inference technique, known as expectation propagation (EP). Although this turbo-equalizer has been shown to behave asymptotically like maximum a posteriori (MAP) detection, finite-length numerical results suffer from drawbacks due to simplifying assumptions used during the modelling.
Such limitations are partially mitigated by tuning heuristic hyper-parameters through robust learning algorithms.
In this article, this strategy is further investigated with discussion on optimized parameters and with the use of an alternative loss function for training, or by adding further capabilities to adapt learned parameters to the channel state information.


Personnes connectées : 61 Vie privée
Chargement...