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Abstract:
This paper investigates the use of hybrid model-and-data-based deep learning on a recently proposed doubly-iterative
turbo equalizer for handling inter-symbol interference (ISI) channel with single-carrier frequency domain equalization
(SC-FDE). The receiver is obtained through a message-passing-based approximate Bayesian inference technique, known
as expectation propagation (EP). Although this turbo-equalizer has been shown to behave asymptotically like maximum
a posteriori (MAP) detection, finite-length numerical results suffer from drawbacks due to simplifying assumptions used
during the modelling. Such limitations are partially mitigated by tuning heuristic hyper-parameters through robust
learning algorithms. In this article, this strategy is further investigated with discussion on optimized parameters and
with the use of an alternative loss function for training, or by adding further capabilities to adapt learned parameters to
the channel state information.

1 Introduction

The potential impact of deep learning techniques for addressing interference mitigation problems at the physical
layer is a hot topic. While data-driven artificial intelligence (AI) techniques with “black-box” neural networks
have proven their worth in various signal processing fields with a modelling deficit, such as image or audio
processing, their use for classical digital communications problems at the physical layer is questionable. The
transmitter and channel models for most wireless systems are often accurate enough for the derivation of
near-optimal signal processing algorithms, however resulting solutions may suffer from excessive computational
complexity. In this context, hybrid AI techniques are of interest, by locally using learnable functions or param-
eters within a model-based algorithm, for handling modelling deficiency or for reducing algorithm complexity
[1]. These techniques also have the advantage of requiring lower training complexity and their behaviour is
more explainable than complex neural-network structures [2, 3, 4].
Here we study near-optimal detection and decoding of single-carrier transmissions with bit interleaved coded
modulation (BICM). There is a long research track addressing this problem with iterative turbo detection and
decoding techniques that provide reasonable performance and computational complexity trade-off [5, 6, 7]. More
recently, doubly-iterative soft-input soft-output (SISO) detectors have gathered attention, and they are derived
by exploiting Bayesian learning with expectation propagation (EP) [8].
Frequency domain equalizers (FDEs) obtained with such structures share similarities with approximate message
passing (AMP) techniques [9], and, by using the deep unfolding approach [4], they can be seen as neural networks
with some free hyper-parameters to be tuned.

2 System Model and EP-based Equalization

2.1 SC-FDE Transmission Model

This paper considers single-carrier block transmissions, circularized with cyclic prefix. Using a BICM scheme,
a Kb-bits information block b is encoded and then interleaved into a binary sequence d of length Kd. A
memoryless modulator ϕ maps this sequence to x ∈ XK , with |X | = M , Q = log2M and K = Kd/Q. This
operation maps the Q-word dk , [dQ(k−1)+1, . . . , dQk] to the symbol xk, and ϕ−1q (xk) or dk,q are used to refer
to dkQ+q. X is such that independently and identically distributed (IID) data symbols have a zero-mean and
unit variance, i.e. σ2

x = 1.
Assuming perfect synchronization in both time and frequency with the transmitter, and ideal channel state
information, the received baseband observations are y = Hx + w, with, H being the channel matrix and
w ∼ CN (0K , σ

2
wIK) is the additive complex circularly symmetric white Gaussian noise (AWGN).H is a circulant
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Figure 1 – Doubly-iterative EP-based receiver structure.

matrix, whose first column is h = [h0, . . . , hL−1,01,K−L], L < K being the channel spread. In the frequency
domain, the observation are

y = FKy = Hx+w, (1)

where x = FKx, w = FKw and H = FKHFHK . FK is the normalized K-point discrete Fourier transform
(DFT) matrix whose elements are [FK ]k,l = exp(−2jπkl/K)/

√
K, and such that FKFHK = IK . Thanks to

DFT properties, we have w ∼ CN (0K , σ
2
wIK) and H = Diag(h) with h =

√
KFKh.

At the receiver, we consider the use of an iterative detection and decoding scheme, where a SISO decoder
exchanges extrinsic information with a SISO detector, through log-likelihood ratios (LLRs) on coded bits,
thanks to BICM. From the SISO detector’s point of view, prior and extrinsic LLRs are respectively denoted
as La(dk,q) and Le(dk,q), and the prior probability mass function (PMF) on a symbol xk is denoted as Pk(α),
∀α ∈ X . Iterations between these two modules will be denoted with τ = 0, . . . , T in the superscript, with T
being the fixed total number of turbo-iterations.

2.2 EP-based Iterative Frequency Domain Equalizer

The optimal detection and decoding solution for the considered communication system is well-known to be given
by the maximum a posteriori (MAP) criterion over the posterior probability density function (PDF) p(b,d,x|y)
marginalized on b. The use of turbo detection through BICM facilitates this problem by decoupling the problem
of detection and decoding thanks to SISO modules, which carry out MAP inference to estimate the coded block
d, under the assumption of using a sufficiently long interleaver along with memoryless mapping.
Nevertheless the computational and memory complexity of SISO MAP detection alone remains too high for the
problem of equalization, due to exponentially growing number of states of the optimal BCJR algorithm. To
alleviate this approximate Bayesian inference is performed with message passing algorithms such as Gaussian-
approximated belief propagation (GaBP) or expectation propagation (EP), which yield filter-based turbo equal-
izers with lower complexity. In particular it is possible to derive low-complexity detectors (e.g. complexity scal-
ing log-linearly in K) in the FD through the use of fast Fourier transform (FFT) algorithm. In the remainder
of this paper we will discuss a recently proposed EP-based double-loop frequency domain equalizer who has
attractive properties compared to alternative AMP techniques in the same category [9].
The operating principle of this SISO detector is given in Figure 1, where the detector itself consists of a SISO
equalizer, which is an minimum-mean square error-like (MMSE-like) filter, exchanges soft estimates on data
symbols with a SISO demapper. This technique major advantage compared to alternative iterative FDE is that
soft data estimates (xe, ve) and (xd, vd) correspond to extrinsic information in the conventional turbo principle,
and their correlation and orthogonality properties ensure good and predictable convergence properties for the
iterations between the equalizer and the demapper [10]. Soft estimates from the demapper enable the equalizer
to more adequately remove interference from the observations, while limiting the possible bias to its own outputs,
and thus improving the equalization performance. The detailed description of this detection algorithm, called
double-loop scalar EP (DL-SEP), is provided in Algorithm 1.

3 Unfolded Doubly-Iterative Turbo Equalization

Deep unfolding is a machine learning technique which enables deriving a multi-layer neural structure based
on an iterative algorithm. The parameters of the original algorithm can become learnable parameters, or
additional learnable parameters can be added based on expert insight on the involved heuristics and loose
approximations on the original algorithm. This approach has been successfully applied to belief propagation
(BP) based decoding algorithms by applying smoothing weights on exchanged messages [12]. On the other
hand, in [13], Vector AMP (VAMP) algorithm has been unfolded (without any additional smoothing), and all
its linear filtering parameters and non-linear decision parameters has been left free for optimization through
learning. As a result, the optimized parameters behave identically to the analytical MMSE-optimal solution of
VAMP, thus showing that among iterative detection structures that consist of successive linear and non-linear
estimators, EP-based algorithms such as VAMP/OAMP (without smoothing, i.e. β = 0) are already optimal
with respect to their structures, and exhaustive learning of all parameters is not necessary.
The unfolding concept has been applied to SISO detector design in [9], by optimizing some hyper-parameters of
the DL-SEP algorithm. As this algorithm belongs to the category of EP-based MMSE-optimal VAMP/OAMP-
like techniques, relearning the filters and the decision function is not expected to bring any significant gain.
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Algorithm 1 Double-Loop Scalar EP Equalizer (DL-SEP) [11]

Input y, H, σ2
w

1: Initialize the decoder with L(0)
a (dk) = 0,∀k.

2: for τ = 0 to T do
3: Update the prior PMF on xk, with ∀k, ∀α ∈ X ,

P(τ)
k (α) ∝ exp

(
−
∑Q
q=1 ϕ

−1
q (α)La(dk,q)

)
.

4: Compute the prior mean and variance of xk, ∀k
x
p(τ)
k , EP [xk] =

∑
α∈X αP

(τ)
k (α), vp(τ) , 1

K

∑
k VarP [xk] =

1
K

∑
k

(∑
α∈X |α|2P

(τ)
k (α)− |xp(τ)k |2

)
.

5: Initialize the soft feedback on xk with the priors, ∀k, xd(τ,0)k = x
p(τ)
k and vd(τ,0) = vp(τ).

6: for s = 0 to S do
7: Perform FFT on xd(τ,s) to get xd(τ,s).
8: MMSE filtering with interference cancellation is performed for k = 1, . . . ,K,

ξ(τ,s) = K−1
∑
k |hk|2/(σ2

w + vd(τ,s)|hk|2),
f (τ,s)
k

= hk/[ξ
(τ,s)(σ2

w + vd(τ,s)|hk|2)],
x
e(τ,s)
k = x

d(τ,s)
k + f (τ,s)

k
∗(y

k
− hkx

d(τ,s)
k ),

ve(τ,s) = 1/ξ(τ,s) − vd(τ,s).
9: Perform IFFT on xd(τ,s) to get xd(τ,s).

10: Update a posteriori PMF of xk, with ∀k, ∀α ∈ X ,
D(τ,s)
k (α) ∝ exp

(
−|xe(τ,s)k − α|2/ve(τ,s)

)
P(τ)
k (α).

11: if s < S then
12: Compute the mean and the variance of APP PMF of xk, ∀k

µ
d(τ,s)
k , ED[xk] =

∑
α∈X αD

(τ,s)
k (α), γd(τ,s) , K−1

∑
k VarD[xk],.

13: The soft data feedback towards the equalizer is computed through the division of the PDF
CN (µdp,k, γ

d
p), by the PDF CN (xep,k, v

e
p)

v?(τ,s) , 1/(1/γd(τ,s) − 1/ve(τ,s)),
x
?(τ,s)
k , v?(τ,s)

(
µ
d(τ,s)
k /γd(τ,s) − xe(τ,s)k /ve(τ,s)

)
.

14: Avoid undesirable fixed points of EP (local extrema) through smoothing (0 ≤ β ≤ 1),
x
d(τ,s+1)
k , (1− β)x?(τ,s)k + βx

d(τ,s)
k ,

vd(τ,s+1) , (1− β)v?(τ,s) + βvd(τ,s).
15: end if
16: end for
17: Compute extrinsic LLRs, ∀k, q

L
(τ)
e (dk,q) , ln

∑
α∈X 0

q
D(τ,S)
k (α)− ln

∑
α∈X 1

q
D(τ,S)
k (α)− L(τ)

a (dk,q),

with X bq = {α ∈ X : ϕ−1q (x) = b}, b ∈ F2, then feed them to the decoder to get next priors L(τ+1)
a (dk),∀k.

18: end for

However, smoothing parameters can be learned in order to alleviate the message passing algorithm’s weaknesses
to short cycles on the factor graph. By considering a different damping value at each self-iteration, the learnable
parameters are {β(0), β(1), . . . , β(S)}, and to render them independent of the selected channel code, a mutual-
information based loss function has been used in [9].

3.1 Mutual Information based Loss Functions for Learning SISO Detectors

In order to optimize the SISO detector with no dependence on the channel code, we propose to use a loss function
that is directly inspired from the extrinsic information transfer (EXIT) analysis of turbo iterative systems [14].
The behaviour of the loss function is characterized by a single scalar that corresponds to the average mutual
information (AMI) IA between La(d) and d. This approach can be effectively applied by considering the prior
LLRs to be consistently Gaussian-distributed, i.e. La(d) ∼ N ((1 − 2dk,q)µa, 2µa), with µa = J−1(IA) and
J(µ) , 1 − EL∼N (µ,2µ)[log2(1 + e−L)]. Next, in order to optimize the iterative convergence capabilities of the
detector, the loss function should be directly dependent on the extrinsic LLRs Le(d), such that the optimized
receiver also maximizes the area under the EXIT chart of the detector and thus enhance the achievable rates.
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Figure 2 – “Learned-DL-SEP": Unfolded deep EP network (with S layers) at the τ th turbo iteration.

Hence the proposed training loss function L is given as

L(d, d̂, IA) , −
1

QNK

∑
k,q

∑
n

`(dk,q, d̂k,q[n](IA)), (2)

d̂k,q[n](IA) ,
1

1 + exp(Le(dk,q, IA)[n]
, (3)

where IA is the AMI between artificially generated La(d) and d, Le(d, IA)[n] is the extrinsic output of the
unfolded network, when La(dk,q, IA)[n] is provided as priors, and n = 1, . . . , N denotes the index of prior LLR
samples. d̂k,q[n](IA) is a soft bit equivalent of the extrinsic messages, and `(dk,q, d̂k,q[n](IA)) denotes a bit-wise
loss metric, which will be specified in Section 3.2.
The training process is carried out with the ADAM optimizer [15], which is a stochastic gradient descent
technique where the learning rate is automatically adjusted depending on the first and second order statistics’
estimates of the changes in the gradient of the loss function. By initializing the learning rate to 0.025, and by
using mini-batches with 200 samples of

• noise variance realizations σ2
w, with SNRc = 20 log10 σx/σw following uniform distribution over the interval

of interest (e.g. 5 to 30 dB).

• a pseudo-codeword realization d, uniformly selected among 2Kd possibilites,

• realizations of the noise vector w and of the channel H, according to σ2
w and channel power-delay profile,

• a set of prior LLR realizations La(d, Ia)[n], for n = 1, . . . , N .

Learning process carries out an averaging over N prior codeword LLRs, for each sample of the mini-batch, in
order to learn a value of the desired parameters β = [β(0), β(1), . . . , β(S)] as a function of IA. Moreover, as
there is a bijective between IA and the prior variance of soft symbol estimates, vp(τ) (see line 4 of Algorithm 1),
β can be tabulated as a function of vp(τ). Finally, during the practical deployment of the optimized receiver,
instantaneous value of vp(τ) at the ongoing turbo-iteration τ would enable the receiver to select its optimal
weights β.
This framework has enabled us to optimize DL-SEP by considering it as a deep neural network, and overcome
somme error-floor issues at high SNR operating points in [9]. In the remainder of this paper we further investigate
the capabilities and the extensions of this hybrid-AI based FDE structure.

3.2 The Impact of the Selected Loss Function

In our previous work, we have used the negative cross-entropy (CE) loss function, given by

`CE(dk,q, d̂k,q) = −
[
dk,q log

(
d̂k,q

)
+ (1− dk,q) log

(
1− d̂k,q

)]
, (4)

which was selected due to its strong link to the mutual information of extrinsic LLRs, which enables the learning
framework to optimize the extrinsic information of the SISO module.
In the context of channel decoding with unfolded BP, the use of an alternative metric, called the soft-bit-error-
rate (SBER), given by

`SBER(dk,q, d̂k,q) = d̂k,q
1−dk,q

(
1− d̂k,q

)dk,q

, (5)

yields better results for optimizing the bit error rate (BER) and the packet error rate (PER) of the system [16].
Hence, we are interest to test its pertinence in the equalization application under investigation.
Finally, it is also possible to use a symbol-wise metric to optimize this receivers performance, by using the
mean-squared error (MSE) between the equalized estimate xek and the transmitted symbols xk in order to focus
the training on optimizing the filtering and interference cancellation stage.
First, in order to illustrate the capacity of each one of these loss functions to capture the behaviour of BER,
or PER, we consider a simplified neural equalizer with up to two layers, where the same fixed parameter β is
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Figure 3 – Comparison of alternative loss metrics with BER and PER as a function of β for a 2-layer equalizer.
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Figure 4 – Comparison of a 2-layer DL-SEP with trained parameters from different loss metrics.

used for smoothing. In this setting, for β varying from 0 to 1, BER, PER and the three loss functions above
are measured.
In Figure 3, these loss functions are compared in the Proakis C channel for Eb/N0 = 13 dB, when a 2-layer
(2 self-iterations) DL-SEP receiver is used with a recursive systematic convolutional (RSC) channel code of
polynomials [7, 5]8 and rate 1/2 with 8-PSK modulation. It is seen that the minimum of SBER manages to
accurately follow the optimum BER when the system is not turbo-iterated (i.e. IA = 0, left plot), but not
necessarily when there is feedback from the decoder (right plot). On the other hand, the minimum of CE
provides overall a closer estimate to the optimum PER, whether the system is iterated or not. MSE does not
provide a sufficiently accurate representation of optimal error rates.
Hence, we have carried out the training framework for both CE and SBER loss functions, in order to evaluate
their impact on the actual receiver performance. The training of SBER appeared to be numerically more
challenging than CE; the ADAM optimizer tends to seek values of β outside the interval [0, 1], and trained
values for low IA can be negative. This results in severe degradation of BER performance at high SNR, and to
overcome this limitation, we have manually clipped learned parameters to [0, 1]. The impact of this approach
is illustrated in Figure 4-(a), where the raw use of trained parameters from SBER causes unacceptable BER
degradations above 20 dB, and interestingly the use of clipping slightly improves the receiver decoding threshold.
In Figure 4-(b), we compare the PER behaviour of a 2-layer DL-SEP when parameters are trained with CE and
SBER (clipped), and CE is shown to outperform SBER overall, except in the absence of prior information, i.e.
0 T.I. (turbo iterations) where they nearly yield the same PER.

3.3 Interpretation of the Learned Parameters

Next, the values of the learned parameters (in our case the damping coefficients which control the receiver
convergence behaviour) are discussed to illustrate that such hybrid learning techniques provide explainable
results. In order to correctly interpret results, we recall that damping factors close to one means that the
feedback from the previous self-iteration (equivalently, layer) is privileged. If damping factors of all self-iterations
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Figure 5 – Learned values of the damping parameters as a function of the mutual information IA of prior LLRs
provided by the decoder, for 1 to 4 inner “self-iteration” layers.

are high, the feedback from the decoder is weighted more. If damping factors are close to zero, the current
feedback from the demapper takes more importance.
Figure 5 shows the values of the learned damping parameter as a function of the prior information IA ∈
{0, 0.33, 0.67, 0.78, 0.89, 0.94, 0.99, 1} for different number of layers, by using the CE. The plotted values of β
correspond to those used for simulations with CE in Figure 4. When there is no or very weak prior information
IA ≈ 0, confidence is given to the demapper feedback (β ≈ 0), but in case of multiple layers, the damping
factors of the deeper ones are higher (i.e. their feedback has weaker impact), thus controlling residual error
propagation. When the prior information from the decoder is perfect, there is no need to equalize, hence β → 1,
otherwise a compromise is made across the layers. In particular, oppositely to the cases with low IA, when IA
gets closer to 1 increased damping is used at the first layers in order thus privileging decoder feedback.

3.4 The Impact of SNR-adaptative Learned Parameters

In our previous works, as described in Subsection 3.1, the training is performed over a vast range of signal-to-
noise ratio (SNR) interval to provide overall adequate learned parameters. Thus, in the context of DL-SEP,
learned parameters are only dependent on the prior information IA (or equivalently, the prior covariance vp(τ)).
In this section, we explore the effects adapting parameters to the operating point conditions by making learned
hyper-parameters also SNR-dependent. Hence the learning procedure is changed to use a fixed noise variance,
in order to have a set of learned parameters β(s)(IA, σ

2
w) tabulated as a function of IA and σ2

w.
In Figure 6 we compare the PER performance obtained with CE loss function in the conventional approach
with parameters obtained through learning with SNR-dependent CE. The obtained improvements with the SNR-
dependent parameters is less than 0.025 dB and thus we can conclude that the originally proposed framework
which solely uses the prior information IA for parameter adaptation is robust. Indeed, as the feedback from the
decoder naturally incorporates some information about the state of the SNR, this learning framework appears
to be attractive for optimizing SISO detectors.

4 Conclusion

The use of deep unfolding on iterative physical layer algorithms enables to overcome their modelling or com-
plexity limitations by exploiting the powerful optimization capabilities of stochastic training strategies. In this
paper, we aim to get a better grasp of unfolded turbo detection techniques that are optimized with hybrid-AI
by further analysing the response of the proposed receiver to different learning parameters.
Our complementary investigations let us think that the promising soft BER loss functions, which provided
reduced packet error rates in decoding applications, is not well adapted for turbo detection, while cross entropy
on extrinsic soft bits seems to match better to the actual PER behaviour. Moreover, choosing the right loss
function is fundamental also for reducing the complexity of the receiver. The cross entropy loss function matches
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Figure 6 – Comparison of SNR-adaptative CE-based learned parameters with SNR-invariant CE-based learned
parameters.

well with extrinsic information behaviour at the output of the demapper, and hence it allows to dynamically
select optimal damping parameters only as a function of the average mutual information from the decoder,
while adding SNR information is not necessary and brings no significant improvement.
Finally, by using deep unfolding, the neural network implemented at the receiver inherits the structure and
fundamental behaviour of the underlying EP-based Bayesian inference algorithm, thus considerably simplifying
the interpretation of the impact of the learned parameters on the receiver behaviour.
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