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Abstract:
We present a neural network architecture able to efficiently detect modulation techniques in a portion of I/Q signals.
This network is lighter by up to two orders of magnitude than other architectures working on the same or similar tasks.
Moreover, the number of parameters does not depend on the signal duration, which allows processing stream of data,
and results in a signal-length invariant network. In addition, we develop a custom simulator able to model the different
impairments the propagation channel and the demodulator can bring to the recorded I/Q signal: random phase shifts,
delays, roll-off, sampling rates, and frequency offsets. We benefit from this data set to train our neural network to
be invariant to impairments and quantify its accuracy at disentangling between modulations under realistic real-life
conditions.

1 Introduction

During the last few years, a lot of effort has been put into applying the performances of machine learning to
the physical layer of radio transmission. Toward this goal, multiple directions are investigated; of interest in
this study is modulation classification through supervised learning [1].
A large step in this direction was accomplished by [1] through the publication of a public data set for radio
modulation classification, along with an artificial neural network architecture. Following this release multiple
publications presented neural networks and analyses with respect to this data set, e.g. [2, 3, 4, 5, 6, 7, 8, 9].
[10] showed that machine learning (ML) based modulation classifiers already outperform traditional techniques
based on higher order statistics. On the other hand [11] showed that even though ML based classifiers give
better results, they can be less robust to data with impairments not present in the training set. This outlines
the need to feed realistic and complete data sets to machine learning algorithms.
This study presents a novel neural network architecture that outperforms existing ones in the modulation
recognition task. It is lighter than previously published networks [1, 10] and is built to be invariant under
signal duration. We also develop a synthetic data set generator that allows to better control the sets of
impairments and better understand their effects on the accuracy of our classifier.
This article is organized as follows. Section 2 presents all the data sets, either publicly available or developed
here. Then, section 3 details the three state of the art architectures and the two developed for this study.
They are compared in section 4 with respect to their accuracy at classifying modulations and we show that
our network outperforms the others, while being two to ten times lighter. We study the performances of
our architecture under variation of the signal length, and under frequency shifts in section 5. We present a
conclusion in section 6.

2 Data sets

The industry standard data set, and its following updates, for modulation classification in radio is given by
[12, 1, 13]. The first release, RadioML2016.04C (ML: Machine Learning), is composed of 11 modulations: 8PSK,
AM-DSB, AM-SSB, BPSK, CPFSK, GFSK, PAM4, QAM16, QAM64, QPSK, and WBFM, with 20 evenly
spaced bins in signal-to-noise ratio (SNR), ranging from −20 to 18 dB. The set is composed of 162,060 examples,
consisting in 128 samples of I/Q (in-phase/quadrature) signals. The simulated synthetic data were produced
using software defined radio programmed with GNU radio [14].
Three releases expanded and completed the set. RadioML2016.10A expanded to 220,000 the number of examples.
RadioML2016.10B provides 1,200,000 examples on the same grid of SNR, but removes the AM-SSB modulation,
leading to a total of 10 classes. RadioML2018.01A [10] provides a total of 2,555,904 examples, 1024 samples
long, with a signal-to-noise ratio ranging from −20 up to 30 dB. Along with synthetic data, this set provides
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Impairment Range

Tsample/Tsymbol [0.3, 0.5]
Phase [0, 2π]
Delay [0, 1]
Roll off [0.1, 0.5]
SNR {0, 10, 20, 30, 40}
Relative frequency offset, ∆f ±[10−6, 5× 10−1]

Table 1 – Set of impairments simulated in the AugMod synthetic data set, developed in this study.

Number of RML-ConvNet RML-CNN/VGG RML-ResNet Mod-LCNN Mod-LRCNN
signal samples (ours) (ours)

128 2,829,399 199,111 179,303 37,487 97,663
1024 21,179,479 256,455 236,647 37,487 97,663

Table 2 – Number of parameters of the five different networks for signals with 128 or 1024 samples. For this
table we choose 7 output classes, slightly different number of classes do not yield significant changes in the order
of magnitude of the number of parameters.

radio signals propagated through real indoor environment, transmitted and received via two universal software
radio peripherals (USRP). This former data set expands to 24 the number of different modulations classes:
32PSK, 16APSK, 32QAM, FM, GMSK, 32APSK, OQPSK, 8ASK, BPSK, 8PSK, AM-SSB-SC, 4ASK, 16PSK,
64APSK, 128QAM, 128APSK, AM-DSB-SC, AM-SSB-WC, 64QAM, QPSK, 256QAM, AM-DSB-WC, OOK,
and 16QAM. For simplicity, in this study we limit the data sets to positive SNR, we verify nonetheless that
similar results are obtained on the whole range. All of these data sets are publicly available1.
In order to independently study the performances of machine learning in modulation classification, we develop
a synthetic custom data set. In addition, this module allows us to tune different parameters which are fixed
or unknown in the previously defined data sets. As a consequence it allows us to study its robustness against
parameters, while improving upon it. Seven linear modulations are simulated: BPSK, QPSK, PSK8, QAM8,
QAM16, QAM32, and QAM64, with 5 evenly spaced bins of SNR from 0 to 40 dB. We generate 175,000 ex-
amples, i.e. 5000 per (SNR, modulation) pairs. The I/Q signal is produced for 1024 samples. A vast range
of impairments brought by the propagation channel and the demodulator are added to the baseline data set:
random phase shifts, delays, roll-off, sampling rates, and additive Gaussian noise. We also produce an addi-
tional data set enhanced with an extra impairment: relative frequency offsets. This allows us to better study its
individual impact on modulation classification. Hereafter, we refer to this data set as AugMod, for “augmented
modulation” data set. The range of the parameters are given in table 1.
As a result we benefit from five different data sets, with positive SNR, with both synthetic and indoor-
propagated signals, to perform modulation classification under impairments. The first four data sets are
public: RadioML2016.04C has 81,030 examples, RadioML2016.10A has 110,000 examples, RadioML2016.10B
has 600,000 examples, and RadioML2018.01A has 1,572,864 examples. The fifth data set is private: AugMod
with 175,000 examples. Each data set is split into two halves, one for training and the other for testing. Each
individual signal is normalized by its root mean square, to have a power of 1.

3 Neural network architectures

Along with the available data set, [1] presents a convolutional neural network (ConvNet [15]) performing
modulation classification, hereafter referred as “RML-ConvNet” (RML: Radio Machine Learning). This network
treats the complex I/Q signal as a two-dimensional image, with a single “color” channel. As it is presented,
this network has 2,829,399 parameters, when the I/Q signal has 128 samples and the data set has 7 different
classes. The architecture is not invariant with the number of samples; this imposes to train a different network
for every possible length of the input signal. Furthermore, a signal given with 1024 samples would multiply
the number of parameters by approximately one order of magnitude, compared to the one for 128. This aspect
produces a hardly scalable architecture for longer signals. Table 2 gives for two different length of signals, 128
and 1024, the number of parameters, or weights, of the neural networks studied here.
In a more recent release of their work, [10] presented an updated data set, RadioML2018.01A, with 1024 sam-
ples long signals. They also developed two extra neural networks: “RML-CNN/VGG” and “RML-ResNet”.
The first network builds upon the already developed RML-ConvNet network, but limits the explosion of the
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number of parameters at 1024 samples through a VGG network (Visual Geometry Group [16]). It is modified
to fit a 1-dimensional convolutional neural network (CNN). The second network has a residual architecture
(ResNet [17]). ResNet has historically been invented to be easier to train for deep neural networks. Although
both of these networks have less parameters than RML-ConvNet, as shown on table 2, they still suffer from the
augmentation of the number of parameters with the signal length. For example, going from 128 to 1024 samples
adds 30% more parameters. Because of this aspect, they lack the ability to adapt to signals of different sizes
and, as for RML-ConvNet, must be re-trained for each signal length.
We propose a lighter convolutional neural network to perform modulation classification, invariant of the input
signal length: Light Modulation Convolutional Neural Network, “Mod-LCNN”. The complex I/Q signal is
treated as a one-dimensional signal with two channels. These channels are expanded to higher dimension
space through consecutive 1-dimensional convolutional layers. Then through an average pooling layer, the time
dimension is collapsed to produce a one-dimensional layer of dimension that of the last convolutional layer, which
is fed into a fully connected layer, and a softmax [18] layer to perform classification. Each convolutional layer
of kernel size 7, along with the first fully connected layer, are followed by the rectified linear unit (ReLU [19])
activation function. During training, we apply dropout [20] to the output weights of the first fully connected
layer, thus preventing overfitting.
We develop two different networks: “Mod-LCNN” and “Mod-LRCNN”. Both are presented on figure 1. These
two networks have the structure presented above, they differ in how each convolutional layer is applied. In
the case of Mod-LCNN (top panel), we use a regular CNN, Mod-LRCNN (bottom panel) is a ResNet [17]. As
a consequence each convolution step is split into three simple convolutions. The first one has a kernel size 1,
allowing to expand the filter dimension [21], the two following convolutions have a kernel size of 7. The output
of these last two consecutive convolutions is added to the output of the first one, through a skip connection
(see figure 1).
For these two networks, the number of parameters does not depend on the signal duration. The consequence of
this design is that the same trained network can be used for signals of different lengths. The resulting networks
have 37,487 parameters for Mod-LCNN and 97,663 for Mod-LRCNN (table 2). As shown on figure 1, these
two networks can be modeled as two blocks. The first one is a “latent space embedding”, i.e. it extracts latent
features of the signal, invariant of its length. The second block is a fully connected network that performs the
“classification”. The average pooling layer serves thus as a bottleneck between these two blocks.
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Figure 1 – Architecture of Mod-LCNN (top) and Mod-LRCNN (bottom), the neural networks developed in this
study. Ns is the number of samples: 128 or 1024 in this study, Nc is the number of output classes: 7, 10, 11
or 24 in this study. The 1-dimensional convolutions have a kernel size of 7. During training the dropout rate
is 0.5.

4 Comparison of the different architectures

We benefit from the five different data sets presented in section 2 to train and compare the five artificial neural
networks of section 3. RML-ConvNet implementation is publicly provided by the author2, in Keras [22], with
TensorFlow backend [23], we thus use the same framework for all the other network architectures. Following
the publicly available implementation of RML-ConvNet, we initialize all weights using the “Glorot” uniform
initializer [24] for convolutional layers and through “He” normal initializer [25] for fully connected layers. The
training is ran on a Nvidia 1080 Ti.

2https://github.com/radioML/examples
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Data set RML-ConvNet RML-CNN/VGG RML-ResNet Mod-LCNN Mod-LRCNN
(ours) (ours)

128 samples

RadioML2016.04C 93 93 95 93 95
RadioML2016.10A 84 83 90 90 91
RadioML2016.10B 89 91 93 93 93
RadioML2018.01A 50 70 76 68 78
AugMod (ours) 64 60 71 75 75

1024 samples

RadioML2018.01A 61 87 88 85 89
AugMod (ours) 74 76 83 89 89

Table 3 – Accuracy of the five different neural network architectures on the different data sets. The perfor-
mances are given for a signal of size 128 for all data sets, and for 1024 samples when available. Boldface texts
highlight the best results for each data sets.

The neural network weights are learned using the training set through the Adam optimizer [26], to minimize
the categorical cross-entropy loss function. Among the five data sets, two have 1024 samples long signals:
RadioML2018.01A and AugMod. We train the networks on these two data sets twice: once on the full signal
duration, and another time keeping only the first 128 samples. The training is performed for 200 iterations, or
epochs, through each data set with a batch size of 512 examples. Because of computation time, all networks
are trained for only 50 iterations for RadioML2018.01A, when using the full 1024 samples long signals.
Table 3 presents the accuracy on the test sets for the five data sets, over the five different neural networks. The
accuracy, in percent, is given by the proportion of correctly assigned modulations on the test set, after the end
of training. Boldface texts highlight the best results for each data set. All networks perform relatively equally
well on RadioML2016.04C and on RadioML2016.10B. RML-ConvNet and RML-CNN/VGG do not manage to
reach as good performances as other networks on other data sets. This is explained by the too large number
of parameters for the first network, resulting in overfitting the training set. For the second network this is
explained by the depth of the network, preventing the gradient updates to efficiently propagate through the
network.
We confirm the results noted by [10], RML-ResNet gives indeed the best performances over all the data sets,
when compared to RML-ConvNet and RML-CNN/VGG. Mod-LCNN, developed in this study, outperforms
RML-ResNet when testing on the AugMod data set, however it fails at giving good results on RadioML2018.01A.
This can be interpreted by the too small number of parameters. Adding more layers would reduce the per-
formances by producing a too deep architecture, harder to train. Mod-LRCNN manages to outperforms all
the other networks, building on Mod-LCNN performances, but adding a residual network architecture. It in-
creases the accuracy by up to 2% on RadioML2018.01A, with 128 samples, and by up to 6% on AugMod, with
1024 samples.
Figure 2 presents the learning curves, i.e. the error rate as a function of the number of epochs, for all the
networks, on the AugMod data set, with 1024 samples. Unbroken curves give the results on the test sets, and
dotted curves on the training sets. This figure outlines the advantages of the Mod-LRCNN architecture: it
outperforms other architectures with the lowest error rate, converges faster and continuously, and is less prone
to overfitting.
We compare the performances of each neural network at classifying modulations, on the AugMod data set, as
a function of signal-to-noise ratio. The results are presented on the left panel of figure 3. The panel gives the
error rate as a function of SNR. Mod-LRCNN, developed for this study, performs more than 40% better than
the best architecture of previous studies, RML-ResNet, at SNR = 0. In the SNR ∈ [0, 30] range, Mod-LRCNN
effectively improves the performances by ∼ 5 dB.
We assess the training time by looking at the time per epoch when running on the AugMod data set, with
1024 samples. Other data sets give similar results. Mod-LRCNN runs in 3.1 ms per example, resulting in
27 seconds per epoch, with 512 examples per batch, for a total training time of 1.5 hours with 200 epochs.
Mod-LCNN and RML-CNN/VGG are twice as fast, however, RML-ResNet is 1.25 times longer. Finally RML-
ConvNet runs in twice as long due to the large number of parameters (table 2). The fact that Mod-LRCNN
runs each epoch in twice the time compared to Mod-LCNN is balanced by both its higher accuracy (table 3)
and the fact that less epochs are needed to converge (figure 2).
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Figure 2 – Error rate as a function of the number of epochs for the five different neural network architectures,
compared with the performances of a random classifier. Solid curves are for the test set and dotted curves for
the training set. The comparison is performed with the AugMod data set on 1024 samples long signals.

5 Specific performances of Mod-LRCNN

As discussed previously in section 4, the Mod-LRCNN architecture outperforms all other architectures in ac-
curacy. We investigate in this section its performances on different signal lengths, and under different sets of
impairments.

5.1 Signal duration

Mod-LCNN and Mod-LRCNN’s strength are their invariance under the signal duration. This means that once
the network has been trained, it can be used to infer the signal modulation, whatever its length. We test this
property on three different training strategies for Mod-LRCNN. The following results are given through the
implementation of Mod-LRCNN in PyTorch [2]. This choice gives us more flexibility during training.
The right panel of figure 3 presents the classification error rate as a function of the signal length. These results
are given on the AugMod data set. The first strategy is to train Mod-LRCNN on 128 samples long signals. The
second strategy is to train on 1024 samples long signals. On the test set, we limit each example to the first
{16, 32, 64, 128, 256, 512, 1024} samples, infer the modulation class, and give the resulting error rate.
In the right panel of figure 3 the blue dashed curve presents the results for the first strategy, and the orange for
the second. One could have expected Mod-LRCNN trained on 1024 to outperform the first strategy on the full
range. It is the case for signals more than 256 samples long, however it is not the case bellow. This indicates a
tendency of Mod-LRCNN, trained on 1024, to overfit long signals.
We develop a third strategy where we modify dynamically the length of the signal during training. At each
batch iteration we randomly pick an integer Ns ∈ [16, 1024], and limit the signal duration to the first Ns

samples. The resulting accuracy on the test set is given in the green unbroken curve. We observe that indeed
this new training scheme allows to get good performances for short and long signals.

5.2 Frequency shift

The AugMod synthetic data set is reproduced adding a relative frequency offset (table 1) on top of the other
baseline impairments. We span a wide range of values, from positive and negative 50% of the carrier frequency,
with a logarithmic scale: ∆f ∈ ±[10−6, 5×10−1]. The effect of this latter impairment is to drift the constellations
into circular patterns with a typical time scale ∆f ·Tsample. The results are presented on the left panel of figure 4,
for Mod-LRCNN trained on the AugMod data set, with 1024 samples long signals.
In this figure, the unbroken blue curve gives the result when Mod-LRCNN is trained on the AugMod data set
without the frequency shift impairment, with variable length of signals (sec. 5.1). This curve thus displays the
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Figure 3 – Left: Error rate as a function of the signal-to-noise ratio for the five different networks. The
performances are given for the AugMod data set, with 1024 samples long signals. Right: Error rate of the
Mod-LRCNN architecture, developed for this study, on the AugMod data set as a function of the signal length.
The blue dashed curve gives the performances for a model trained on 128 samples long signals, the orange dashed
curve for a model trained on 1024, and the green unbroken curve for a training with signals of dynamically
random sizes Ns ∈ [16, 1024].

ability of the network to generalize to out of distribution example signals. The dotted blue curve presents the
same results, but for a training with fixed 1024 samples long signals. We observe that the accuracy starts to
drop at |∆f | = 10−4 and falls out at 10−2. This behavior is even more drastic when the network is trained
on fix 1024 samples long signals. This later behavior confirms the tendency of networks trained on fixed size
signals to overfit long signals and thus be less robust to time varying impairments.
The orange curves show the accuracy on the test set when Mod-LRCNN is trained on half of the AugMod data
set, impaired with frequency shifts. We recover good performances at large frequency shifts. Following the
methods of curriculum learning [27], only few epochs are needed to perform this re-training, if the weights are
initialized to the best values found when trained on the simpler Augmod data set.

6 Conclusion

This study presented an artificial neural network architecture allowing to classify modulations: the light residual
convolutional neural network for modulation classification, “Mod-LRCNN”. This architecture is lighter than
previously published networks. Its architecture is invariant to the signal length, allowing it to adapt perfectly
to signals recorded on more or less samples, without a need for re-training. The network is designed to search
for the natural symmetries of the signals, extract latent features and use them to classify modulations. It simply
builds statistical significance with the signal duration, and thus can process data stream.
It performs better than three public networks [1, 10] on all four publicly available data sets, e.g. RadioML2018.01A,
and on a custom made data set, AugMod. It is defined by up to two orders of magnitude less parameters. In
the SNR ∈ [0, 30] range, Mod-LRCNN effectively improves the threshold by ∼ 5 dB (up to 10 dB) compared
to previously published networks.
We characterize some of the performances of the network. When trained on dynamically changing examples
lengths, between 16 to 1024 samples, the network is able to give very good accuracy whatever the inferred
signal lengths. This training technique prevents overfitting long signals, and thus gives good performances on
evolving impairments, e.g. frequency shift. We show the ability of the network to efficiently classify signals
under frequency shift impairment, even when they are out of the distribution given in the training set. Even
better performances can be obtained through curriculum learning, by training the network in few epochs, if the
weights are initialized at their values for the simpler data set.
The data set introduced in this study has allowed us to train our network to create signal representation
invariant to real life impairments. We aim at adding more complexity to this set, e.g. non-linear modulations,
multi-path propagation, and test the network under more real indoor and outdoor propagated signals.
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